

THE INSTRUMENT

based on a new spectroscopic technique called saturated-absorption cavity ringdown (SCAR).

Radiocarbon (14C) is a radioactive chemical element, with a natural abundance of about 1 atom every 1 trillion carbon atoms. At present, accelerator mass spectrometry (AMS) is the reference technology for high-precision radiocarbon measurements.

Thanks to its new technology, allows to take radiocarbon measurements in your laboratory in a simple and reliable way.

APPLICATIONS

Environmental monitoring and CO₂ emission quotes

The $\rm CO_2$ emission quotes have become products to measure, valorize and exchange on global financial markets. Therefore, the accurate high resolution $^{14}\rm CO_3$ measurement is essential.

Certification of biogenic fraction in materials

The distinction between emissions of fossil and non-fossil origins is crucial for quality evaluation of products: knowing the biogenic fraction of textile, plastics, oil, fuels is important for assessing their environmental impact.

Life/biomedical sciences

14C is used as a marker of drugs / treatments, to monitor their metabolism and efficacy.

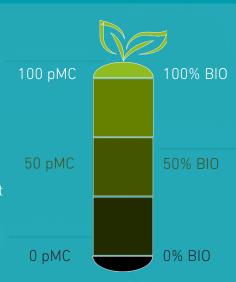
Monitoring of nuclear sites

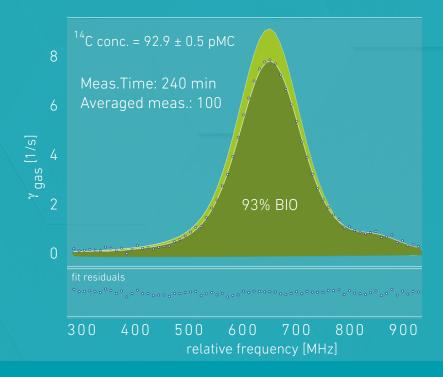
Areas around nuclear power plants / waste repositories has a higher concentration of radiocarbon dioxide, whose radioactivity might raise health issues for resident people.

Radiocarbon dating

The most classic application of radiocarbon measurement for dating archaeological and cultural heritage: the radiocarbon content in a biological sample allows to trace the age of cessation of organic activity.

BIOBASED CONTENT MEASUREMENTS


The objectives of the EU's 2030 Agenda focus on developing new technologies that can transform renewable natural resources into bio-based products and materials in a sustainable way.


The industry is starting to produce manufactured goods that contain mixtures of bio-based and petroleum-based materials. Measuring the 14CO2 mole fraction to retrieve the percentage of modern carbon (pMC) is a direct quantification of the biogenic fraction within a material.

The concept of Modern/Biogenic and Fossil

14 G

analyzes the CO₂ gas produced by burning the sample and retrieves the mole fraction of ¹⁴C by measuring the spectral area of a given molecular transition of the ¹⁴CO₂ molecule. If the sample is taken from a modern living being, the measured ¹⁴C mole fraction will be close to the so-called natural abundance or Modern Carbon (MC) mole fraction. This corresponds to 100 percent of Modern Carbon, i.e. 100 pMC. A similar measurement taken on a sample containing only fossil carbon will not show any signal corresponding to the ¹⁴CO₂ transition, since no ¹⁴C is present: this corresponds to 0 pMC.

Measurement on Textile

Measuring the biogenic content of a tissue reveals that about 7 percent of the material is derived from fossil sources.

MEASUREMENT PERFORMANCE

	MIN	TYP	MAX	UNITS	NOTES
Carbon sample mass required	6	8		mg	
N ₂ O contamination level		5	10	ppb	
¹⁴ C content precision					
@ 10 minutes avg time	1.0	1.5		рМС	/
@ 60 minutes avg time	0.4	0.6		рМС	
@ 240 minutes avg time	0.2	0.3		рМС	
Accuracy	0.2	0.5		%	
¹⁴ C content measurement range	0		104	рМС	with negligible memory effect
Limit of detection	1	1.5		рМС	

SPECIFICATIONS

	MIN	TYP	MAX		NOTES
Power Supply		230		Vac	
Absorbed Power		2.5	3	kW	
Weight		600		kg	
Size	200 x 110 x 160 cm			cm	
Warranty	1		year		
Safety Tested to	EN 5! EN 6	1326- 5011 1000- 1000- 1000-	4-2 4-8		European Council Directives: 2004/108/EC 2006/95/EC

ppqSense S.r.l.

Viale Ariosto 492/B, 50019 Sesto Fiorentino FI, Italy web: www.ppqsense.it email: info@ppqsense.it

Tel.: +39 055 8023943